免费看裸体 视频阳春-免费看裸体 网水视频-免费看裸体 网站-免费看裸体 网站视频-免费看裸体 网站涂抹-免费看裸体 阳春

News
Company News
Media Reports
Published Paper

Published Paper

  • 2024

    Xue N., Hong D., Zhang D., et al. Engineering IscB to develop highly efficient miniature editing tools in mammalian cells and embryos. Molecular Cell (2024).

  • 2024

    Wang X., Wu X., Tan B., et al. Allogeneic CD19-targeted CAR-T therapy in severe myositis and systemic sclerosis achieved durable remission and reversed extensive fibrotic damages. Cell (2024).

  • 2024

    Yang L., Huo Y., Wang M., et al. Engineering APOBEC3A deaminase for highly accurate and efficient base editing. Nature Chemical Biology (2024).

  • 2023

    Zhang, N., Liu, X., Qin, J., et al. LIGHT/TNFSF14 promotes CAR-T cell trafficking and cytotoxicity through reversing immunosuppressive tumor microenvironment. Molecular Therapy (2023).

  • 2023

    Chen, L., Hong, M., Luan, C., et al. Adenine transversion editors enable precise, efficient A·T-to-C?G base editing in mammalian cells and embryos. Nature Biotechnology (2023).

  • 2022

    Chen, L., Zhu, B., Ru, G., et al. Re-engineering the adenine deaminase TadA-8e for efficient and specific CRISPR-based cytosine base editing. Nature Biotechnology (2022).

  • 2022

    Chen, L., Zhang, S., Xue, N., et al. Engineering a precise adenine base editor with minimal bystander editing. Nature Chemical Biology (2022).

  • 2022

    Zhang, J., Hu, Y., Yang, J., et al. Non-viral, specifically targeted CAR-T cells achieve high safety and efficacy in B-NHL. Nature (2022).

    Recently, chimeric antigen receptor (CAR)-T cell therapy has shown great promise in treating haematological malignancies1–7 . However, CAR-T cell therapy currently has several limitations8–12. Here we successfully developed a two-in-one approach to generate non-viral, gene-specifc targeted CAR-T cells through CRISPR–Cas9. Using the optimized protocol, we demonstrated feasibility in a preclinical study by inserting an anti-CD19 CAR cassette into the AAVS1 safe-harbour locus. Furthermore, an innovative type of anti-CD19 CAR-T cell with PD1 integration was developed and showed superior ability to eradicate tumour cells in xenograft models. In adoptive therapy for relapsed/refractory aggressive B cell non-Hodgkin lymphoma (ClinicalTrials.gov, NCT04213469), we observed a high rate (87.5%) of complete remission and durable responses without serious adverse events in eight patients. Notably, these enhanced CAR-T cells were efective even at a low infusion dose and with a low percentage of CAR+ cells. Single-cell analysis showed that the electroporation method resulted in a high percentage of memory T cells in infusion products, and PD1 interference enhanced anti-tumour immune functions, further validating the advantages of non-viral, PD1-integrated CAR-T cells. Collectively, our results demonstrate the high safety and efcacy of non-viral, gene-specifc integrated CAR-T cells, thus providing an innovative technology for CAR-T cell therapy.
  • 2022

    Fu, B., Liao, J., Chen, S. et al. CRISPR–Cas9-mediated gene editing of the BCL11A enhancer for pediatric β0/β0 transfusion-dependent β-thalassemia. Nature Medicine (2022).

    Gene editing to disrupt the GATA1-binding site at the +58 BCL11A erythroid enhancer could induce γ-globin expression, which is a promising therapeutic strategy to alleviate β-hemoglobinopathy caused by HBB gene mutation. In the present study, we report the preliminary results of an ongoing phase 1/2 trial (NCT04211480) evaluating safety and efficacy of gene editing therapy in children with blood transfusion-dependent β-thalassemia (TDT). We transplanted BCL11A enhancer-edited, autologous, hematopoietic stem and progenitor cells into two children, one carrying the β0/β0 genotype, classified as the most severe type of TDT. Primary endpoints included engraftment, overall survival and incidence of adverse events (AEs). Both patients were clinically well with multilineage engraftment, and all AEs to date were considered unrelated to gene editing and resolved after treatment. Secondary endpoints included achieving transfusion independence, editing rate in bone marrow cells and change in hemoglobin (Hb) concentration. Both patients achieved transfusion independence for >18?months after treatment, and their Hb increased from 8.2 and 10.8?g?dl?1 at screening to 15.0 and 14.0?g?dl?1 at the last visit, respectively, with 85.46% and 89.48% editing persistence in bone marrow cells. Exploratory analysis of single-cell transcriptome and indel patterns in edited peripheral blood mononuclear cells showed no notable side effects of the therapy.
  • 2020

    Zhang, X., Zhu, B., Chen, L.?et al.?Dual base editor catalyzes both cytosine and adenine base conversions in human cells.?Nature Biotechnology (2020).

    Although base editors are useful tools for precise genome editing, current base editors can only convert either adenines or cytosines. We developed a dual adenine and cytosine base editor (A&C-BEmax) by fusing both deaminases with a Cas9 nickase to achieve C-to-T and A-to-G conversions at the same target site. Compared to single base editors, A&C-BEmax’s activity on adenines is slightly reduced, whereas activity on cytosines is higher and RNA off-target activity is substan- tially decreased.
  • 2020

    Zhang X., Chen L., Zhu B., et al. Increasing the efficiency and targeting range of cytidine base editors through fusion of a single-stranded DNA-binding protein domain. Nature Cell Biology (2020).

    Cytidine base editors are powerful genetic tools that catalyse cytidine to thymidine conversion at specific genomic loci, and further improvement of the editing range and efficiency is critical for their broader applications. Through insertion of a non-sequence-specific single-stranded DNA-binding domain from Rad51 protein between Cas9 nickase and the deaminases, serial hyper cytidine base editors were generated with substantially increased activity and an expanded editing window towards the protospacer adjacent motif in both cell lines and mouse embryos. Additionally, hyeA3A-BE4max selectively cata- lysed cytidine conversion in TC motifs with a broader editing range and much higher activity (up to 257-fold) compared with eA3A-BE4max. Moreover, hyeA3A-BE4max specifically generated a C-to-T conversion without inducing bystander mutations in the haemoglobin gamma gene promoter to mimic a naturally occurring genetic variant for amelioration of β-haemoglobinopathy, suggesting the therapeutic potential of the improved base editors.
  • 2020

    Zeng J, Wu Y, Ren C, Bauer DE, et al. Therapeutic base editing of human hematopoietic stem cells. Nature Medicine, 2020.

    Base editing by nucleotide deaminases linked to programmable DNA-binding proteins represents a promising approach to permanently remedy blood disorders, although its application in engrafting hematopoietic stem cells (HSCs) remains unexplored. Here we purified A3A (N57Q)-BE3 protein for ribonucleoprotein (RNP) electroporation of human peripheral blood (PB) mobilized CD34+ hematopoietic stem and progenitor cells (HSPCs). We observed frequent on-target cytosine base
Back to top
主站蜘蛛池模板: 一级丰满老熟女毛片免费观看 | 国产丰满老熟女60岁 | 在线无码av | 国产91玉足榨精在线播放 | 亚洲精品无码成人影院 | 无码人妻丰满熟妇**网站牛牛 | 国产精品久久久久久久久久久久 | 性一交一黄一片国产 | 无码成人AV在线看免费 | 人妻精品一区 | 果冻传媒AV在线观看 | 91老师秘 片黄在线观看 | 中文人妻熟女乱又乱精品 | 波多野结衣在线观看中文字幕 | 精品人妻一区二区三区含羞草 | 白嫩少妇激情无码 | 国产看真人毛片爱做A片 | 朝桐光在线 | 久久国产色情爽翻爽翻 | 精品麻豆 | 老司机操逼视频 | 日韩中文字幕有码 | 日本高清网站 | 美女黄视频大全 | 国产人妻人伦精品午夜剧场 | 亚洲+无码+欧美+另类 | 亚洲AV网址 | 国产偷窥熟妇高潮呻吟 | 天天日夜夜操男人天堂 | 亚洲AV秘 片一区二区草莓成人 | 182午夜成人福利AV在线观看 | 欧美亚洲另类在线 | 看片在线观看 | 国产乱伦无码视频 | 国产乱码精品一区二区三区14 | 天天综合网,7799精品视频天天看, | 在线无码播放 | 国产老熟女伦老熟妇露脸 | 无码精品一区二区三区在线播放 | 久久99精品久久久久久无毒不卡网站查找 | 日韩论理 |